
Schnittwertempfehlung für Trochoidfräser

Vorschub und Schnittgeschwindigkeit

- a_p = abhängig von der Werkzeuglänge
- a_e = abhängig vom Werkstoff

OptiMill-Tro-Inox | SCM292

	•										
MZG*	Werkstoff	Festigkeit/Härte [N/mm²] [HRC]		Kühlung			v _c [m/min]	f _z [mm] in % vom D	a _e [mm] in % vom D	h _m max. [mm] in % vom D	Bearbeitungsbeispiel
		[,]	MMS/Luft	Trocken	KSS		[,]		70 10 2		
M ₁ M ₁	.1 Rostfreie Stähle, austenitisch	< 700	✓		✓		160 - 220	0,8 - 1,1	5 - 10	0,48 - 0,60	VEC NIAO O
M1	.2 Rostfreie Stähle, ferritisch/austenitisch (Duplex)	< 1.000			✓		120 - 160	0,6 - 1,0	5 - 10	0,46 - 0,58	- X5CrNi18-8 _ Ø = 12 mm
M2 M2	.1 Rostfreier Stahlguss, austenitisch	< 700	✓		✓		160 - 220	0,8 - 1,1	5 - 10	0,48 - 0,60	$v_c = 180 \text{ m/min}$ $a_p = 32 \text{ mm}$
M3 M3	.1 Rostfreier Stahlguss, ferritisch/austenitisch (Duplex)	< 1.000			✓		120 - 160	0,6 - 1,0	5 - 10	0,46 - 0,58	$f_z = 0.09 \text{ mm}$
S 1 S1	1 Titan, Titanlegierungen	< 400			✓		110 - 170	0,65 - 1,3	6 - 12	0,52 -0,60	TiAl6V4
S S2	1 Titan, Titanlegierungen	< 1.200			✓		90 - 150	0,6 - 1,2	5 - 10	0,46 - 0,56	$g = 12 \text{ mm}$ $a_e = 1,2 \text{ mm}$ $a_p = 30 \text{ mm}$
S2 S2	2 Titan, Titanlegierungen	> 1.200			✓		70 - 130	0,4 - 1,0	5 - 10	0,42 - 0,54	$f_z = 0.09 \text{ mm}$

Korrekturfaktoren

Faktor	v _c	a _e	h _m
2xD	1,05	1,05	1,05
3xD	1,00	1,00	1,00
4xD	0,92	0,90	0,94
5xD	0,80	0,80	0,87

Hinweis:

Beim trochoiden Fräsen verändern sich die angegebenen Schnittbedingungen während des Bearbeitungsprozesses. Dies ist auch abhängig von der verwendeten CAM-Software sowie der Bearbeitungsstellung des Werkzeugs im Werkstück. Vorschub und Eingriffsbreite bzw. Eingriffswinkel ändern sich während der Bearbeitung ständig, um je nach Kontur eine möglichst konstante Spanmittendicke zu erzielen.